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Abstract

In the work presented is a new approach to modelling the bubbly flow in the boundary layer. The approach is based

on summation of dissipation energy coming from the shearing turbulent flow in the absence of bubbles and the dis-

sipation contribution from the presence of bubbles. As a result we obtain the dissipation of equivalent single phase

turbulent flow. The model has been solved using the method of asymptotic correction to provide an explicit differential

equation describing the velocity profile. That can be solved with the assumption of constant void fraction distribution

to yield the analytical velocity profile. Alternatively, author has developed his own model of lateral void migration,

which is distinct from other models by virtue of presence of another rotational velocity. Velocity distributions calcu-

lated using the new model have been compared against the experimental data of turbulent bubble flows with small void

fraction. A good consistency between calculations performed using a new model and available experimental data has

been obtained. Additionally, a solution of the temperature field is also given. In the case of a constant void fraction

distribution analytical distribution of the Nusselt number is given or the set of differential equations needs to be

solved.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Correct modelling of the gas phase distribution is of

primary importance for pressure drop predictions as

well as heat and mass transfer calculations. Bearing in

mind, that two-phase flow mechanisms are governed by

multidimensional effects, which occur at specific flow

regimes of bubbly flow it is so difficult to capture the

physics of such behaviour. In the case of upward bubbly

flow there can be found two distinct distributions of void

fraction, one form which peaks in the core of the flow,

i.e. the so called phenomenon of ‘‘core peaking’’, and a

case with a peak close to the wall, named the ‘‘wall

peaking’’. Influences of void fraction peaking on heat

transfer cause significant modelling problems. Several

multidimensional mechanisms have been proposed to

explain such behaviour, however so far none of them has

proved to be successful.

A great deal of effort has been devoted to the de-

velopment of models capable of describing two-phase

flows, Drew and Wallis [1]. Calculations of velocity

distributions and modelling of interfacial phenomena in

the flows with dispersed phase show numerous con-

straints of such models, Lance and Lopez de Bertodano

[2]. These constraints stem primarily from the fact that

inappropriate closure equations have been assumed,

which describe the momentum exchange at the interface

and turbulence of each phase. The closure equations

have either no correct physical meaning or the mecha-

nisms describing the phenomena are not accurately

captured. Complexity of problems concerned with two-

phase flows renders that the solutions are sought by all

possible means, such as generalisation of the results of

experimental investigations, theory of similarity and

theoretical investigations. The most appropriate at the

moment model is the four field two fluid model, Lahey

and Drew [3], but even that model, despite its undis-

puted successes in simulations of vertical flows in ducts,

free external flows or subcooled boiling, the four field

two fluid model still requires research into the funda-

mental issues of physical phenomena governing the flow.

Analysis of the phenomena occurring in the two-phase
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flow is a very difficult task due to the complexity of the

phenomena under consideration. On the other hand,

usage of the four field two fluid model requires calcu-

lations using modern CFD solvers such as for example

PHOENICS, CFX or purpose written software.

In the literature on two-phase flows there can be

found a number of experimental data, which have been

conducted in order to understand better the structure of

a turbulent bubble flow. Serizawa et al. [4], Wang et al.

[5], Nakoryakov et al. [6], Liu [7] analysed the bubbly

flow, where the main turbulence changes and void

fraction distributions took place in the vicinity of the

wall. These research has, however, been done for the

case of flows in pipes, where due to rather small pipe

diameters the measurements and their interpretation was

quite difficult. Recently, there appeared a new study of

the bubble flow in the boundary layer on a flat plate due

to Moursali et al. [8], Marie et al. [9]. This detailed data

is concerned with a much simpler configuration, namely

that of a turbulent boundary layer developing on a

vertical flat plate immersed in a uniform upward bubbly

flow and this data has been chosen for validation of the

presented model.

As known, the solution to heat transfer in the fully

developed single phase boundary layer flow is a uni-

versal velocity and temperature field. The aim of the

present work is to present a similar solution for the case

of fully developed bubbly flow in the boundary layer.

This is by no means simple problem which requires prior

knowledge of the velocity field, i.e. velocity profile and

void fraction distribution in the boundary layer. The

author has developed his own concept of modelling of

two-phase flow in the boundary layer, Mikielewicz

[10,11], which in the case of a constant void fraction

gives an analytical form of velocity distribution. Such

model of the hydrodynamics of bubble flow can be

subsequently used to obtain the temperature field. The

temperature field can be obtained in a twofold manner.

Firstly, it will be derived for the case of a constant void

fraction in the boundary layer. Secondly, own model for

a variable void fraction across the boundary layer, Mi-

kielewicz [12], will be used in resolution of the temper-

ature field. In this case it is necessary to solve three

ordinary differential equations of the first order. Results

of calculations have been compared against the limiting

case of theoretical correlations describing the flow over

the plate by the viscous single phase fluid. Obtained have

been satisfactory results.

2. Model of a turbulent two phase flow

Firstly presented will be the model of the bubbly

flow. It is derived based on energetical considerations of

the dissipation process in the two-phase bubbly flow.

The following assumptions have been made:

1. Turbulence exists only in the liquid phase.

2. Dispersed phase (spherical bubbles) occupy some vol-

ume of the flow and influence the momentum and

turbulence of liquid phase.

3. There is no motion of the gaseous phase inside the

bubbles.

4. Fluid motion is fully developed.

5. Surface void fraction is equal to volumetric void frac-

tion.

A general flow schematic is presented in Fig. 1. The

problem is considered as one-dimensional. We consider

a control volume V containing a number of vapour

bubbles n. The underlying hypothesis for derivation of

the new model of bubbly flow is a postulate that the

Nomenclature

a void fraction

db bubble diameter

D bubble diffusivity

d layer thickness

e dissipation energy

F force acting on a bubble

g gravity

j von Karman constant

n number of bubbles

N dissipation power

q density

l turbulent viscosity

s shear stress

T temperature

u,# longitudinal and transverse velocity

V volume

y transverse co-ordinate

Subscripts

b bubble

D drag

e equivalent

l liquid, linear

n non-linear

R relative bubble to liquid

t turbulent

TP two-phase

w wall
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total dissipation energy in the flow is a sum of dissipa-

tion coming from the shearing liquid flow and dissipa-

tion from the bubbles generating the dissipation, which

in the specific form yields:

ee ¼ eTP þ eb ð1Þ

Dissipation energy of the two-phase flow can be defined

as a power lost due to friction by an arbitrary layer

isolated from the velocity profile, of the thickness d and

area S, with respect to the control volume (see Fig. 2).

After some re-arrangements, the dissipation of the

flow in the control volume is expressed as a ratio of the

square of the shear stress in the continuous liquid phase

to the turbulent viscosity:

eTP ¼ NTP

V
¼ sTPSuTP

Sd
¼ sTPuTP

d
¼ s2

TP

lt

¼ ð1 � aÞ2s2
l

lt

ð2Þ

where sTP describes the shear stress in two-phase flow

and sl ¼ lloul=oy is the shear stress in liquid. As can be

seen, the shearing flow influence is modelled by the

quantities related to the liquid flow.

The specific energy dissipation from the bubbles is

defined as a ratio of power dissipated by the bubbles in

the control volume. The dissipation power can be ex-

pressed as a product of the total force acting on the

bubbles and the relative bubble velocity. The total force

acting on the bubble in the present state of work will be

expressed as an aerodynamic force. Using the above

assumptions, the equation expressing the energy dissi-

pation due to the presence of bubbles takes a form:

eb ¼ N
V

¼ nFbuR

V
¼ 3

4

aqlCDu3
R

db

¼ s2
b

lt

ð3Þ

where Fb ¼ CDðqlu
2
R=2Þðpd2

b=4Þ; V ¼ ðpd3
b=6Þ and sb is

the stress resulting from the presence of bubbles.

Finally, we assume the idea of the equivalent two-

phase flow, which is regarded as a flow with single phase

properties corresponding to the properties of two-phase

flow. Dissipation of the equivalent flow in the control

volume of arbitrary layer isolated from the flow can be

written analogically to (3) as

ee ¼
s2

e

lt

ð4Þ

The turbulent viscosity appearing in the model is mod-

elled using the Prandtl mixing length model. In our

analysis we will also use the following quantities re-

quired in reduction of equations to the non-dimensional

form:

us ¼
ffiffiffiffiffi
sw

q

r
; uþ ¼ ul

us
; yþ ¼ yus

m
;

sþe ¼ se

sw

; Tþ ¼ T
T1

ð5Þ

Substituting (2)–(4) into (1) we obtain a relation linking

the shear stress in the two-phase flow with turbulent

stresses of continuous phase and energy of dissipation

from the presence of bubbles, i.e. the model of two-

phase flow. Substituting the Prandtl mixing length

model for the turbulent viscosity and casting the whole

expression into a non-dimensional form we get:

sþ
2

e

j4
¼ ð1 � aÞ2yþ

4 duþ

dyþ

� �4

þMayþ
2 duþ

dyþ

� �
ð6aÞ

where M is defined as

M ¼ 3

4

CDu3
R

dbj2

v
u4

s

ð6bÞ

Eq. (6a) is a highly non-linear equation of the first order,

which can only be solved numerically. However, it obeys

the asymptotic condition, i.e. when the void fraction,

a ¼ 0, we have a single phase flow of liquid alone. The

above result can be cast into a more general form which

describes another very important issue, i.e. that the

stress in the two-phase flow is a sum of the squares ofFig. 2. Model of two-phase flow.

Fig. 1. Forces acting on the bubble in vertical flow.
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stresses coming from the shear stress in liquid with-

out the presence of bubbles and interaction of bubbles

on the liquid. This is a geometrical summation rather

than the algebraic one, often quoted in the literature:

s2
e ¼ s2

TP þ s2
b ð7Þ

Relation (7) stems directly from (1) if substituted are

expressions (2)–(4). It forms therefore the extension of

acknowledged so far assumptions made by other au-

thors, who regarded that stresses are linearly dependent,

Lance et al. [13]. The assumption of a linear relation

between the shear stress coming from the shearing liquid

flow and the bubbles is the simplest of all assumptions

and in reality is always valid for infinitely small change of

parameters. In a wider range of variation of parameters a

non-linear behaviour appears. Postulated hypothesis (1)

results with a geometric summation of stresses (7), hence

shows the theoretical foundations of the model, which

are quite different from the ones hitherto assumed. As-

ymptotic analysis of (7) gives the following: if the term

se=sb ! 1 then se ! sb, whereas in the case when

se=sb ! 0 then se ! sTP. Such relation exhibiting the

non-linear behaviour of equivalent stress cannot be ob-

tained with linear assumption of stress variation.

3. Universal velocity profile for bubble flow

It is generally acknowledged that the numerical

methods cannot provide an analytical form of the so-

lution, which is much more useful for discussion than

tabulated data or graphs; same pertains to the generality

of the solution obtained in this way. In this light an

attempt has been made to provide an approximate so-

lution of Eq. (6a) valid in the entire range of considered

void fraction. The method of solution is based on the

method of asymptotic correction, Polyanin and Dilman

[14]. Asymptotic correction allows us to effectively im-

prove various approximate formulas obtained earlier

from both theoretical considerations and experimental

data using the exact asymptotes of the original boundary

problem. Applying this method to (6a) the following

formulae describing the velocity gradient in a two-phase

boundary layer can be obtained [11]:

duþ

dyþ
¼ 1

jyþð1 � aÞ1=2 þMj4ayþ2
ð8Þ

Eq. (8) is an ordinary differential equation. When we

could assume a constant void fraction distribution then

(8) has a following analytical solution:

uþ ¼ � 1

jð1 � aÞ1=2
ln

jð1 � aÞ1=2 þMaj4yþ

yþ
þ C ð9Þ

Eq. (9) can be regarded as the law of the wall for two-

phase bubble flows. In order to determine the integra-

tion constant C we need to assume some division of the

two-phase flow into regimes. Due to the fact that the

structure of the two-phase flow is yet to be satisfactorily

understood, it has been assumed in the present work

that the division of the flow similar to the single phase

flow holds. In some literature there is assumed that the

non-dimensional thickness of the laminar sublayer ex-

tends to yþ ¼ 11:6, Troshko and Hassan [15]. In the

present case, it has been assumed that in the laminar

sublayer, of the assumed thickness yþ ¼ 8, there are no

bubbles and then the constant C is determined to be

C ¼ 7:7 for j ¼ 0:4.

4. Mechanism of lateral motion of bubbles

The correct solution to Eq. (8) should contain the

relation describing the void fraction distribution across

the boundary layer. This task is by no means simple. So

far several researchers have dealt with this problem,

however without much success. It has been acknowl-

edged that the mechanism of lateral migration of bub-

bles in the vicinity of the wall stems from the balance of

lateral and drag forces [16].

Horizontal forces acting on the bubble have sche-

matically been presented in Fig. 1. It must be noted that

the bubble is considered here as a gas bubble surrounded

by a thin layer of liquid. Such approach requires con-

sideration of contribution of the added mass effect. The

added mass effect is considered here both in the trans-

lative lateral motion of the bubble as well as the bubble�s
rotating motion [17].

In order to consider the bubble lateral motion in the

work considered is a fully developed bubbly flow under

steady-state conditions. In this case vertical forces are

neglected in derivation of the lateral motion. It is as-

sumed that the lift force FL is balanced by the lateral drag

force FD and the inertia force. The bubble inertia force in

the lateral translative motion has been included here and

the force balance on the bubble therefore takes the form:

mb

d#b

dt
¼ FL � FD ð10Þ

where mb is a bubble virtual mass, which is modelled as a

half of the mass of displaced liquid, see Fig. 1. Mass of

displaced liquid has been calculated [11] as a thin layer

of liquid surrounding the bubble of thickness d. Sought

added mass is then equal to qlpd
3
b=12. Additionally, in

(10) #b is a lateral bubble velocity. In the one-dimen-

sional steady state flow the lift force can be expressed in

the form:

FL ¼ CL

p
6

qld
3
buRx ð11Þ

The relative bubble velocity, uR, is approximated by the

bubble terminal rise velocity in the quiescent container,
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uR ¼ ub � ul � u1. Such relation is applicable in the case

of small void fractions. The angular velocity of consid-

ered bubble resulting from the velocity field is

x ¼ ð2Dul=dbÞ ffi 2ðoul=oyÞ. The lift coefficient was as-

sumed a constant value of CL ¼ 0:1.

There is however another influence on the bubble

rotation, which has yet to be considered in the literature.

It is caused by the fact that the bubble in vertical upward

motion releases some space behind it, which is subse-

quently filled by the liquid pushed away by the bubble

from its front [12], Fig. 3. If we consider n bubbles in a

given control volume travelling upwards, then we can

assume that each bubble occupies an imaginary channel

of the area of 1=n, Madejski [18]. These channels have

different cross-sectional areas due to the fact that there is

a lateral distribution of dispersed phase in the channel.

A continuity equation can be written for a selected plane

perpendicular to the flow in the form:

uRdtð1 � aÞAk þ
pd2

b

4
dy ¼ 0 ð12Þ

If we define the void fraction in the imagined channel as

a ratio of bubble projection area to the area of the

subchannel, i.e. in the form a ¼ ðpd2
b=4AkÞ then from Eq.

(12) we can derive the liquid velocity, s, in the direction

opposite to the liquid motion s ¼ dy=dt

s ¼ � a
1 � a

uR ð13Þ

On such basis velocity, opposite in direction to the liquid

velocity, can be derived, which creates an additional

rotation of the bubble defined as [10,11]:

x2 ¼ 2
os
oy

¼ � 2uRdb

ð1 � aÞ2

da
dy

� �
ð14Þ

Additional angular velocity acting on a bubble, which

subsequently can be algebraically added to the angular

velocity resulting from the velocity profile, depending on

the concentration profile, i.e. wall peaking or core

peaking, acts in the same or opposite direction as rota-

tion stemming from the primary velocity profile. In the

case of two rotations with opposite signs we can observe

the motion in one or another way. Such motion is

identified by the bubble diameter contained in uR, i.e. for

a certain range of bubble diameters the motion is to-

wards the wall, whereas in others, towards the core of

the flow. This has an experimental confirmation, �ZZun

[19], where it has been concluded that in the range from

0.8 to 5 mm there is wall peaking in the upward flow,

whereas for other diameters the maximum takes place in

the location of the core of the flow. The presence of a

second rotation should contribute to explanation of

such behaviour.

In connection to this fact the resultant circulation in

(11) ought to be changed, as now it consists of two

components, i.e. x ¼ x0
1 þ x0

2. The total circulation can

be cast as follows:

x ¼ x0
1 þ x0

2 ¼ 2
dul

dy

(
� 2uR

ð1 � aÞ2

da
dy

� �)
ð15Þ

5. Modelling of added mass in rotating motion

Up to now we have been considering the bubble in

inviscid liquid flow. This is not true as in all liquid there

are shear stresses acting on the bubble reducing its an-

gular velocity. In this light, the angular velocity needs to

be changed. The balance of forces acting on the bubble

in its rotating motion can be written as:

M0 þ
d
dt

ðJxÞ ¼ 0 ð16Þ

where M0 is a rotation resistance moment, J the moment

of gas–liquid system inertia with respect to the centroid,

x the angular velocity of centroid. However, there are

other forces acting on the bubble, but they do not pro-

duce a force couple with respect to the centroid. The

rotation resistance moment with respect to the centroid

has been given by Lamb [20]

M0 ¼ pd3
bllx ð17Þ

where the angular velocity is a resultant velocity acting

on the bubble, i.e. in our case it acts on the sum of an-

gular velocities. Referring to Lamb [20] we can conclude

that the bubble inertia is increased by the half of the

mass of displaced liquid, which subsequently can be

expressed as a thin layer of liquid of thickness d sur-

rounding the bubble, and hence the sought mass is

qlpd
3
b=12. If we compare the relations pd2

bd ¼ qlpd
3
b=12

then we obtain the thickness of modelled liquid layer as

d ¼ db=12 [18]. It can be seen that the considered liquid

film is very thin. Total moment of inertia of bubble is

J ¼ Jb þ Jl ¼
pd5

bql

60

1

2

�
þ

qg

ql

�
ffi pd5

bql

120
ð18Þ

Fig. 3. The model of bubble moving through liquid.
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Lets cast the balance of forces on a bubble in a slightly

different form

J
dx
dy

dy
dt

¼ �M0 ð19Þ

The derivative dy=dt expresses the bubble lateral veloc-

ity, #b. As a result of integration of (19) we can obtain

variation of angular velocity with respect to the distance

from the wall. This is described by the relation

x ¼ x0 exp
pd3

bll

J

Z y

0

dy
#bðyÞ

� �
ð20Þ

With the view to see the major trends in the influence of

added mass on bubble angular velocity lets assume that

the lateral velocity is constant. This assumption is cor-

rect for the vast area of the flow. We obtain then the

following relation

x ¼ x0 exp

�
� 120ml

d2
b#b

y
�

ð21Þ

6. The model of void fraction distribution

Lateral drag force can be written in the form:

FD ¼ CDA
ql#

2
b

2
¼ CD

pd2
bql#

2
b

8
ð22Þ

The drag force will be fully defined when the friction

factor will be adequately prescribed in order to deter-

mine the lateral force. One needs to remember the fact

that the bubble Reynolds number in the lateral motion is

based on a lateral velocity rather than the relative ve-

locity (as found in considerations of the axial flow). We

will use, however, same empirical formulas to obtain the

friction factor CD. For the bubble Reynolds number

from the range 0.5–800 normally the relation

24=Rebð1 þ 0:15 Re0:687Þ is used. In the present study we

used the above relation for the friction factor with own

correction included to account for the change of friction

factor in the vicinity of the wall. In some paper such

correction is regarded as a wall force. The friction factor

takes the form:

CD ¼ 24ð1 þ 0:15 Re0:687Þ
Reb

1

�
þ 0:02db

y

�
ð23Þ

In some experimental evidence it has been found that

there can be observed the change of sign of the lift force,

Moraga et al. [16]. There exist various theories ex-

plaining this fact, but in author�s opinion, so far none is

capable of correctly explaining such behaviour. Bubble

deformation is regarded as a most plausible explanation

for this fact. Postulated model, which contains two an-

gular velocities is capable of explaining such phenome-

non. Change of the sign of lift force is a result of a

change of the sign of angular velocity (consisting of two

components) which is consistent with the physics of the

phenomenon. This can even be done without manual

change to the lift coefficient, CL, which is a very popular

explanation to this fact. From (10) we can determine the

differential equation describing the distribution of lateral

velocity:

d#b

dy
¼ 36mlð1 þ 0:15 Re0:687Þ

d2
b

1

�
þ 0:02db

y

�

� 4CLuR

#b

dul

dy

"
� uR

ð1 � aÞ2

da
dy

#
ð24Þ

Expression (24) contains two unknowns, namely #b and

the void fraction a. In order to solve (24) we require

additional equation combining these variables, which

can be for example the diffusion of bubbles in liquid:

a#b ¼ �Db

da
dy

ð25Þ

where Db is a local bubble diffusivity. Bankoff [21] ex-

tended the Reynolds analogy of turbulent flow onto the

case of bubble diffusion stating, that the eddy diffusivity

of momentum corresponds to the bubble diffusivity.

Subsequently he used the Prandtl mixing length model in

order to determine eddy diffusivity

e ¼ Db ¼ j2y2 dul

dy
ð26Þ

In order to include the effect of added mass in a rota-

tional bubble motion we incorporate a correction for

added mass effect derived in [17] to amend the circula-

tion on a bubble:

x ¼ x1 þ x2 ¼ ðx0
1 þ x0

2Þ exp

�
� 120vl

d2
b#b

y
�

ð27Þ

The final differential equation describing the distribution

of lateral translational velocity with added mass in

translative and rotational motion yields

d#b

dy
¼ 36mlð1 þ 0:15 Re0:687Þ

d2
b

1

�
þ 0:02db

y

�

� 4CLuR

#b

dul

dy

"
� uR

ð1 � aÞ2

da
dy

#
exp

�
� 120vl

d2
b#b

y
�

ð28Þ

In pure air–water system, the relative velocity of bubbles

greater than 1.3 mm can be evaluated, Tomiyama et al.

[22]:

uR ffi u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r
qldb

þ
ðql � qgÞgdb

2ql

s
ð29Þ

In the case of air bubbles migrating in water this relation

gives a velocity equal to 0.23 m/s.
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7. Effect of buoyancy force

In most studies it is assumed, that in the boundary

layer the shear stress is constant s ¼ sw ¼ const which is

a natural assumption in the boundary layer, where the

buoyancy forces are neglected. However, if we want to

consider the direction of vertical motion then we have to

consider the influence of buoyancy forces on the velocity

profile. Performing a force balance on imaginary ele-

ment of liquid containing bubbles, (Fig. 4), we obtain

the following force balance between the weight of the

control volume G ¼ qegdxdy and the buoyancy force

B ¼ qlgdxdy:

�dse dxþ gqldy dx� qegdy dx ¼ 0 ð30Þ

where qe ¼ qlð1 � aÞ þ qga. From (30) we can derive the

distribution of stress across the boundary:

dse

dy
¼ �g 1

�
�

qg

ql

�
qla ð31Þ

As we see the solution for void fraction distribution

requires solving of three differential Eqs. (6a), (18) and

(31). Such an approach has not been found by the au-

thor in the open literature.

As can be seen suggested model consists of four dif-

ferential equations in total. Equations describe the ve-

locity profile (8), lateral velocity (25), void migration

(28) and the shear stress distribution (31). Eq. (6a) is not

explicit and presents numerical difficulties.

8. Heat transfer in the two-phase turbulent boundary layer

In the case of fully developed heat transfer in a two-

dimensional boundary layer we obtain the energy bal-

ance equation, assuming constant physical properties

cp ¼ const and k ¼ const, in the form:

o

oy
ða
�

þ atÞ
oT
oy

�
¼ 0 ð32Þ

From considerations that in the laminar sublayer there

are only viscous effects and the turbulent ones are neg-

ligible we can determine the temperature drop across the

layer, which in the non-dimensional form yields as fol-

lows:

Tþ
w � Tþ

l ¼ qwmld
þ
l

T1kus
¼ qw Pr dþ

l

T1qcpus
ð33Þ

In the buffer layer both influences of molecular and

turbulent viscosity should be considered as well as mo-

lecular and turbulent thermal diffusivity. This gives us

the following temperature drop across the buffer layer:

Tþ
l � Tþ

p ¼ qw

qcpusT1

2rt

j
ln

2rt þ Prjdþ
p � 2Pr

2rt þ Pr jdþ
l � 2Pr

ð34Þ

Solution of the energy equation (32) is obtained after

substitution of relevant velocity profile into the mo-

mentum equation, hence enabling determination of the

turbulent viscosity and then solution of the temperature

field.

In the present considerations we assume, that in the

laminar and buffer sublayers there is merely a liquid

flow, and hence the temperature drop is described by

(33) and (34). Some changes will be applied only in the

core of the flow, where the own model of two-phase flow

will be used, where velocity profile is described by (8).

Following the procedure used in determination of the

temperature drop across the turbulent core in the case of

the single phase flow, we can determine the corre-

sponding temperature drop across the two-phase core

region using the own model. It has the following non-

dimensional form [23]:

dTþ

dyþ
¼ � qrtus

cpswT1

1

jyþð1 � aÞ0:5 þMaj2yþ2
ð35Þ

Assuming a constant heat flux and a constant shear

stress boundary conditions we can obtain in this way the

approximate temperature field in two-phase bubbly

flow. Considered below are two cases.

8.1. Solution at constant void fraction across the boundary

layer

Assuming a constant void fraction in the boundary

layer on a plate Eq. (35) has an analytical solution in the

form:

Tþ ¼

qwrt

qcpusT1
jð1 � aÞ0:5

ln
ð1 � aÞ0:5 þMajy

y

 !
þ C ð36Þ

Fig. 4. Force balance on the two-phase element of fluid.
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The constant C is determined from the boundary con-

dition at the border of a laminar sublayer

yþ ¼ dþ
l ; Tþ ¼ Tþ

l ð37Þ
Combining (36) and (37) we obtain the following solu-

tion

Tþ ¼ Tþ
l þ

qwrt

cpqusT1
jð1 � aÞ0:5

ln
ð1 � aÞ0:5 þMajyþ

ð1 � aÞ0:5 þMajdþ
l

dþ
l

yþ

 !

ð38Þ
In our first approach to determine temperature at the

border of laminar sublayer let�s assume that there are in

the flow two zones, which intersect at the point of

yþ ¼ 11:6, see Fig. 5. In the case of greater values of yþ

we are dealing with the turbulent flow, and for lower

ones we have a laminar flow. Substitution of Tl deter-

mined from (33) into (38) gives

Tþ ¼ Tþ
w � qwmdþ

l

T1kus
þ

qwrt

cpqusT1
jð1 � aÞ0:5


 ln
ð1 � aÞ0:5 þMajyþ

ð1 � aÞ0:5 þMajdþ
l

dþ
l

yþ

 !
ð39Þ

In order to determine the wall temperature Tw we may

use another boundary condition, namely:

yþ ¼ d Tþ ¼ Tþ
1 ð40Þ

The wall temperature takes then a form

Tþ
w ¼ 1 þ qwPr dþ

l

T1cpqus
�

qwrt

cpqusT1
jð1 � aÞ0:5


 ln
ð1 � aÞ0:5 þMajdþ

ð1 � aÞ0:5 þMajdþ
l

dþ
l

dþ

 !
ð41Þ

The resulting Nusselt number after small re-arrange-

ments yields:

Nu ¼ ad
k

¼ qwdþm
kT1ðTþ

w � 1Þus

¼ dþPr

Prdþ
l � rt

jð1�aÞ0:5 ln
ð1 � aÞ0:5 þMajdþ

ð1 � aÞ0:5 þMajdþ
l

dþ
l

dþ

 ! ð42Þ

In the case of division of the boundary layer into three

zones (see Fig. 6) and implementing the procedure de-

scribed above we can obtain the Nusselt number in the

form:

Both forms of solutions (42) and (43) are relatively

simple for the description of this kind of phenomena and

seem to be applicable for engineering calculations. From

the analysis of the form of the Nusselt number it results

that it is generally a function of the following indepen-

dent parameters:

Nu ¼ Nu
Red

wþ
1
;M ; a; Pr

� �
ð44Þ

Analysis of the above parameters on the Nusselt number

will be presented later in the text.

8.2. Solution at variable void fraction

In the case of a variable void fraction presented

above procedure unfortunately does not hold. The

velocity profile (8) must be solved with equations de-

scribing the void fraction distribution (25) and (28).

From the presented above procedure it results that in

order to determine the temperature field in a two-

phase flow with a variable void fraction we must solve

simultaneously three ordinary differential equations

with three unknowns. Calculations start at the bor-

der of the turbulent layer, with the boundary condi-

tions:

yþ ¼ d; uþ ¼ uþ1; Tþ ¼ 1; a ¼ a1;

#þ
b ¼ #þ

b1 � 0 ð45Þ

Nu ¼ dþPr

Prdþ
l þ 2rt

j
ln

2rt þ Prjdþ
p � 2Pr

2rt þ Prjdþ
l � 2Pr

� rt

jð1 � aÞ0:5
ln

ð1 � aÞ0:5 þMajdþ

ð1 � aÞ0:5 þMajdþ
p

dþ
p

dþ

 ! ð43Þ

Fig. 5. Two-zone boundary layer.
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9. Comparison against experimental data

Calculations performed using the postulated model

have been compared against the experimental data of

Mari�ee et al. [9] for the case of upward bubbly flow on a

flat plate. Calculations have been performed using the

Mathcad7 software with adaptive stepsize.

In present calculations it has been assumed that in

the Eq. (28), consisting of two contributions to bubble

rotation, a contribution coming from the non-uniform

lateral distribution of the bubbles, i.e. the rotation de-

scribed by (14), has a much stronger influence and for

that reason circulation coming from the velocity profile

distribution was found to have little effect and has been

neglected in present calculations. It has been done so

due to the fact that the velocity profile in the boundary

layer is flat for almost the entire region and has a strong

variation only very close to the wall, where bubbles are

not present and so the postulated theory. This term in-

cluded in calculations causes significant numerical

problems.

Calculations have been performed for one case cor-

responding to the experimental conditions. In the cal-

culation of the equivalent velocity profile using the

proposed model, the distribution of the void fraction

from experiment corresponding to the external bound-

ary layer void fraction value of 1.3% has been used (Fig.

7). Velocity distribution has been calculated using two

methods, namely using the Eq. (9) (a ¼ const) and al-

ternatively by simultaneous solution of (8), (25) and (28)

(a ¼ var). In calculations using Eq. (9) a constant value

of a ¼ 1:3% has been assumed and external liquid ve-

locity was 1 m/s. The parameter M has been estimated to

be M ¼ 0:729, which has been obtained for the spherical

bubbles with the diameter of about db ¼ 3:5 mm Fig. 7.

Obviously, in general, this parameter is variable with the

distance from the wall, but a more detailed study of that

influence has not been the merit of the present work.

Velocity distribution obtained using the present model

in comparison against the experimental data is presented

in Fig. 7. In the figure presented are also the curves

showing the single phase velocity profile. In Fig. 8 pre-

sented are calculations performed using various turbu-

lence models for the case of single phase flow past the

plate, along with the data for the external void fraction

equal to 1.3%. As can be noticed a small influence of

void fraction changes the picture of the flow. Predictions

for the single phase flow differ significantly from the

Fig. 7. Velocity distribution at void fraction a ¼ 1:3%.

Fig. 6. Three-zone boundary layer.

Fig. 8. Velocity distribution calculated using various turbu-

lence models at void fraction a ¼ 1:3%.
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experimental data. In this light the predictions using the

model show significantly improved consistency.

As can be seen from Figs. 7 and 8, a new simple

model leads to surprisingly good results. There is,

however, a quantitative discrepancy between the exper-

iment and results of calculations, which is strongly in-

fluenced by the choice of the boundary condition on the

velocity profile. The boundary condition assumed in Fig.

4 for the velocity profile was that for wþ ¼ yþ ¼ 8. One

of the objectives of the work would be to determine the

error incurred from the asymptotic solution, which in

the presented case does not exceed 10% in the core re-

gion.

From the analysis of Fig. 9 it results that in the lo-

cation where the void fraction has its peak there is a

change of sign of lateral velocity (Fig. 10), which sup-

ports entirely the theory described above.

In the case of core peaking the mechanism described

above is also revealed (see Figs. 11 and 12). This means

that in order the have a continuously increasing void

fraction we need a negative value of bubble lateral ve-

locity. This means that in such case bubbles travel to-

wards the wall. Experimental data confirming such

phenomenon are still unavailable yet in the literature.

Calculations of heat transfer were conducted for the

following parameters:

• Heat flux density at the wall, qw––100 kW/m2.

• External fluid temperature T1––300 K.

• Film temperature for calculation of water physical

properties––300 K (cp ¼ 4190 J/kg K, k ¼ 0:6 W/

mK, q ¼ 1000 kg/m3, m ¼ 10�6 m2/s)

• von Karman constant––0.4.

• Friction velocity corresponding to the experimental

conditions [8]––us ¼ 0:052 m/s.

• Turbulent Prandtl number––rt ¼ 1:0.

In calculations the following parameters were varied:

the total boundary layer thickness dþ, i.e. the change of

the Reynolds number of the flow, which can be defined

as Red ¼ dþus=v, bubble diameter db, i.e. the parameter

M, and the void fraction a. Results are presented in the

form of graphs in Figs. 13–15, as well as in Tables 1–3.

We can see from Fig. 13 that the increase of void

fraction renders increase of temperature gradient in the

boundary layer and hence the heat transfer coefficient.

This is intuitively correct, as the presence of the bubbles

intensifies heat transfer, but this finding tells us also, that

the model gives a good qualitative agreement withFig. 9. Void fraction distribution in upward flow-wall peaking.

Fig. 10. Lateral velocity distribution in upward flow-wall

peaking case.

Fig. 11. Void fraction distribution in upward flow-core peak-

ing.
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practice. Values of the heat transfer coefficient for dif-

ferent void fractions are given in Table 1. It can be seen

that both formulations, in the case of a two-zone model

and a three-zone model, observe an increase of about

10% with the change of void fraction from 0 to 0.1.

There is however, a significant quantitative discrepancy

between the results given by the two-and three-zone

models. In the case of the presence of bubbles in the flow

we can see that the suggested model predicts almost zero

temperature gradient for yþ > 400, i.e. we can talk

about the decrease of the thickness of the boundary

layer due to the presence of bubbles. Single-phase flow

predicts some temperature gradient at the border of the

boundary layer.

In Fig. 14 presented is the influence of bubble di-

ameter on the temperature distribution in the case where

a ¼ 0:015 and dþ ¼ 1200. A very important finding from

Fig. 14 is that the smaller bubbles intensify more the

heat transfer. This means that smaller bubbles turbulise

more the boundary layer which is obvious. In the

presented example the effect of the bubble diameter

Fig. 12. Lateral velocity distribution in upward flow-core

peaking case.

Fig. 13. Influence of void fraction on temperature distribution

in the boundary layer (three zone model). M ¼ 0:73, dþ ¼ 1200,

qw ¼ 100000 W/m2.

Fig. 14. Influence of bubble diameter on temperature distri-

bution in the boundary layer. a ¼ 0:015, M ¼ 0:73, dþ ¼ 1200,

qw ¼ 100000 W/m2.

Fig. 15. Influence of non-dimensional boundary layer thickness

on heat transfer in the boundary layer. a ¼ 0:015, M ¼ 0:73

(db ¼ 3:5 mm).
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influence is of the order of 10%, in the considered range

of bubble diameters.

In Fig. 15 and Table 3 presented is the influence of

non-dimensional boundary layer thickness on heat

transfer in the boundary layer. In this case the influence

is not very significant, however it can be said that the

thinner the boundary layer is the more intensified heat

transfer becomes. The thinner boundary layer corre-

sponds to larger external liquid velocities, which is

consistent with the findings from single-phase flows.

In Fig. 16 presented are comparisons of calculations

of temperature profiles obtained from the model based

on a constant and variable void fractions for the case of

experimental void fraction presented in Figs. 7 and 8. As

can be seen the qualitative agreement is very good in-

deed. Void fraction, calculated using own model, has

been substituted into the temperature field profile and in

this way the temperature field had been determined.

Calculated in such way temperature distribution has

been compared against the temperature distribution

calculated using Eq. (36) at constant void fraction equal

a ¼ 1:3%. Calculations of heat transfer coefficient using

a variable formulation predict higher values than the

constant void fraction formulation. This is logical, as

when we look at the void fraction distribution in Fig. 9

we can see the peak in its distribution, which takes a

value of about 6.5%, and hence the heat transfer must be

more intensified in this location. Summarising, it can be

said that the proposed model has a good qualitative and

quantitative agreement as far as hydrodynamics is con-

cerned, which allows to judge that the similar should

hold in the case of heat transfer in two-phase flow on a

plate.

10. Conclusions

In the paper author�s own model of bubbly flow in

the boundary layer has been presented. The model is

based on two hypothesis, namely the first one based of

summation of dissipation resulting from liquid flow and

presence of bubbles. The second hypothesis presented in

the paper is identification of additional circulation

around bubble, which in author�s opinion is responsible

Table 3

Influence of non-dimensional boundary layer thickness (Rey-

nolds number) on heat transfer in the boundary layer (three-

zone model)

dþ

(–)

Tþ
w m3l

(–)

Tþ
w 3l

(–)

am3l

(W/

m2 K)

a3l

(W/

m2 K)

Num3l

(–)

Nu3l (–)

250 1.08660 1.09552 3849 3749 30.842 27.961

500 1.08765 1.09552 3803 3640 60.948 55.921

1000 1.08830 1.09410 3775 3538 120.993 111.843

1200 1.08842 1.09500 3770 3512 144.993 134.211

2000 1.08867 1.09700 3759 3441 240.965 223.685

2500 1.08875 1.09800 3756 3411 300.937 279.607

Table 1

Comparison of the values of heat transfer coefficient with in-

creasing void fraction using a three-zone model (M ¼ 0:73,

dþ ¼ 1200)

Void

fraction

(%)

Tþ
w m3l

(–)

Tþ
w 3l

(–)

am3l

(W/m2 K)

am3l=a3l

(–)

Num3l (–)

Three-zone model

0 1.047 1.047 3512 1.000 135.06

1.5 1.044 1.047 3770 1.073 144.99

3.0 1.043 1.047 3853 1.097 148.183

5.0 1.043 1.047 3912 1.114 150.477

7.5 1.042 1.047 3956 1.126 152.156

10.0 1.042 1.047 3984 1.134 153.234

Indices denote: m2l––proposed two-zone model, m3l––pro-

posed three-zone model; 2l––theoretical two-zone single phase

model, 3l––theoretical three-zone single phase model.

Table 2

Influence of bubble diameter on heat transfer in the boundary

layer (three-zone model), a ¼ 0:015, q ¼ 100000 W/m2

Parameter

M (–)

db (mm) Tþ
w m3l (–) am3l

(W/m2 K)

Num3l (–)

11.2 0.50 1.08231 4050 155.760

6.22 0.75 1.08317 4008 154.142

4.132 1.0 1.08395 3970 152.709

1.569 2.0 1.08630 3863 148.563

0.73 3.5 1.08842 3770 144.993

0.45 5.0 1.08974 3714 142.855

0.26 7.5 1.09112 3658 140.703

Fig. 16. Comparison of theoretical temperature distribution

using the model at constant void fraction and the variable void

fraction formulation.
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for different gathering of bubbles in the flow, i.e. wall

peaking and core peaking. The results obtained using

such model have been confronted against experimental

data, where satisfactory agreement has been achieved.

That confirmed the appropriateness of assumed hy-

pothesis. Formulated and presented model of bubbly

flow without bubble generation in its general form

consists of four differential equations of the first order,

namely: equation of lateral bubble velocity, lateral dis-

tribution of void fraction, shear stress distribution and

equivalent velocity of two-phase flow. It is worth

stressing that in the case of a constant void fraction

distribution its is possible to obtain analytical form of

velocity profile, which can be regarded as some kind of

the law of the wall. In author�s opinion such model can

be disseminated for a wider use amongst engineers. Due

to two contributions of circulation around the bubble

the model is capable of predicting the phenomena of

wall peaking and core peaking. In the case of wall

peaking, there must be a change of the sign of void

fraction gradient in the peak, which renders that at this

location there must be a change of a sign of lateral ve-

locity. Presented model can restore this phenomenon. In

the case of core peaking we deal with a negative value of

lateral velocity, which means that it is directed towards

the wall.

In the paper presented also is author�s own solution

to heat transfer in bubbly flow. Again, two solutions

have been presented. The first one, analytical, has been

obtained for the case of bubbly flow with the constant

distribution of void fraction. Obtained analytical tem-

perature distribution in the boundary layer may quite

useful to engineering practice due to a reasonable ac-

curacy, if compared against the solution incorporating

variable distribution of void fraction. The second solu-

tion, more accurate, is based on solution of a set of five

differential equations, namely: lateral distribution of

void fraction, lateral velocity, shear stress distribution,

equivalent flow velocity and temperature. However it is

a more accurate solution it requires more complex nu-

merical calculations.

Summarising it can be concluded, that despite in-

tensively conducted experimental, theoretical and nu-

merical works in the area of two-phase flows more

research is still requires into understanding of bubbly

flows. Presented in the paper model shows, in author�s
own opinion, directions for further research on under-

standing of a complex nature of two-phase flows.
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